Hidalgo Castellanos, Ernesto AméricoRamírez Flores, Aarón ErnestoGuzmán Melara, Rosa Estela2024-01-252024-01-252009-12-01https://hdl.handle.net/20.500.14492/11992La teoría básica de las Transformaciones de Möbius, es decir similitudes (traslación, rotación y dilatación). Por la definición de las transformaciones de Möbius, se puede decir que las similitudes, que son las transformaciones de la forma S(z) = az + b , son casos particulares de las transformaciones de Möbius. Es por ello que se estudiará detenidamente desde un enfoque analítico y geométrico cada una de ellas, así como también la inversión compleja, la inversión geométrica y la proyección estereográfica. Se estudiarán las principales propiedades de las transformaciones de Möbius, entre estas que las transformaciones de Möbius son transformaciones conformes y que dejan invariante la razón cruzada, así como también una propiedad que es muy importante para su clasificación; toda transformación de Möbius no degenerada tiene a lo sumo dos puntos fijos, a menos que sea la identidad. Se clasificarán las Transformaciones de Möbius según sus puntos fijos, ilustrando el comportamiento analítico y geométrico de cada clase resultante: parabólicas, hiperbólicas, loxodrómicas y elípticas. Así mismo, se estudiará otra clasificación de transformaciones Möbius de acuerdo a la traza de la matriz que determina cada transformación de Möbius.es-SVTransformaciones de möbiusmodelo del disco de poincarésimilitudesmatemática510516Transformaciones de Möbius: clasificación y aplicacionesThesis