Teoría de representaciones de grupos finitos y algunas aplicaciones a la probabilidad
Loading...
Date
2018-11-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
El presente trabajo de graduación contiene el desarrollo teórico de las Representaciones de Grupos Finitos sobre los números complejos utilizando conocimientos de _Algebra Lineal y teoría básica de grupos. Asimismo, presenta algunas de las aplicaciones de este tópico a la Probabilidad. En general este trabajo incluye: definiciones básicas y ejemplos de representaciones de grupos finitos, la Teoría de Caracteres, el _Algebra de Grupo y Análisis de Fourier, pq-Teorema de Burnside y el Teorema de la Dimensión, finalizando con algunas aplicaciones a la Teoría de Probabilidad a través de los Paseos Aleatorios. En el primer capítulo se expone la teoría básica de representaciones de grupos _nitos (definiciones, ejemplos y algunos resultados) sobre el cuerpo de los complejos, en el segundo capítulo se desarrolla la teoría básica de caracteres como: el carácter de una representación, las relaciones de ortogonalidad, la descomposición de la representación regular de un grupo _nito, el lema de Schur y sus aplicaciones, entre otros. Además, se hace un breve estudio del Análisis de Fourier sobre Grupos Finitos en el tercer capítulo, que permite ver a las representaciones de grupos a través de la transformada de Fourier utilizando la Teoría de Caracteres.
Description
Keywords
Grupos finitos, probabilidad, teoría de grupos