De la geometría sintética a la geometría hiperbólica
Loading...
Date
2017-09-07
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
En el presente trabajo daremos una introducción a la geometría hiperbólica bidimensional desde el punto de vista geométrico. Se estudiarán tres modelos de la geometría hiperbólica, los cuales son: el modelo del semiplano superior de Poincaré, el modelo del disco de Poincaré y el modelo de Beltrami-Klein. Para hacer la descripción de estos modelos, necesitamos primero estudiar las herramientas euclidianas que nos servirán para la construcción de los objetos geométricos en cada uno de los modelos. La inversión geométrica y las familias de circunferencias coaxiales serán las herramientas que nos van a servir para hacer las construcciones antes mencionadas. Por lo tanto, en el capítulo 1 definimos la inversión geométrica y sus propiedades, así como también la familia de circunferencias coaxiales y sus propiedades con respecto a la inversión. Habiendo descrito las herramientas principales para hacer una descripción de cada modelo a estudiar de la geometría hiperbólica, describimos en el capítulo 2 los tres modelos antes mencionados, deducimos la métrica hiperbólica en el modelo del disco de Poincaré y estudiamos un poco de trigonometría en el modelo del semiplano superior de Poincaré
Description
Keywords
Geometría hiperbólica, fundamentos geométricos, modelo de beltrami-klein