Licenciatura en Matemática
Permanent URI for this collection
Browse
Browsing Licenciatura en Matemática by Title
Now showing 1 - 20 of 43
Results Per Page
Sort Options
Item Análisis armónico sobre la esfera(2020-08-01) López Sandoval, Jaime Arnoldo; Hernández Salamanca, Maritza Odexa; Chicas Reyes, Gabriel Alexander; Martínez de López, Sonia del CarmenRESUMEN: El siguiente trabajo es la representación de un informe final sobre el análisis armónico sobre la esfera, debido a que dicho análisis armónico se encarga de estudiar la presentación de funciones armónicas, la siguiente presentación consta de cuatro capítulos: Series de Fourier: En este capítulo se estudia la serie de Fourier sobre el círculo además de algunos tipos de convergencia del mismo. Espacios de Hilbert: Un breve pero importante y relevante repaso a los espacios pre-Hilbert y espacios Hilbert son hechos para obtener resultados necesarios que serán de gran importancia para los capítulos posteriores. Transformada de Fourier: En este capítulo se toma en cuenta la situación de una función no periódica, se estudia la fórmula de inversión y el teorema de Plancherel, de igual manera se conocerá los criterios bajo los cuales la fórmula de la serie de Poisson se mantiene. Análisis armónico sobre la esfera: Se analizan las funciones armónicas esféricas, así como las propiedades de los grupos topológicos, definiendo un Lapliciano esférico y una integral esférica. Siendo todo lo anteriormente dicho, además, los objetivos a ser perseguidos durante el proceso y justificación del estudio. OBJETIVOS: Estudiar las funciones armónicas en la esfera, al igual que las condiciones de la convergencia uniforme de la serie de Fourier-Laplace de funciones en la esfera, mostrar la irreductibilidad de los espacios de Hilbert y finalmente dar a conocer ejemplos que permitan tener una mejor comprensión de todo lo estudiado. ABSTRACT: The following work is the representation of a final report on the harmonic analysis on the sphere, due to the harmonic analysis is in charge of studying the presentation of harmonic functions, the following presentation consists of four chapters: Fourier series: In this chapter, study the Fourier series on the circle as well as some types of convergence of the same. Hilbert spaces: A brief but important and relevant review of pre-Hilbert spaces and Hilbert spaces are done to obtain the necessary results that will be of great importance for later chapters. Fourier transform: In this chapter the situation of a non-periodic function is taken into account, the investment formula and Plancherel's theorem are studied, in the same way, the criteria under which the Poisson series formula is maintained will be known . Harmonic analysis on the sphere: The spherical harmonic functions are analyzed, as well as the properties of the topological groups, defining a spherical Laplician and a spherical integral. All of the above being said, in addition, the objectives to be pursued during the process and justification of the study. OBJECTIVES: To study the harmonic functions in the sphere, as well as the conditions of the uniform convergence of the Fourier-Laplace series of functions in the sphere, to show the irreducibility of the Hilbert spaces and finally to present examples that allow to have a better understanding of everything studied.Item Anillos de Noether y de Artin(2011-02-01) Martínez Morejón, Cristian Ernesto; Batres Paíz, Pedro Valentín; Vásquez, José FredyRESUMEN: El desarrollo de este trabajo se realiza en tres capítulos, de los cuales a continuación se hace una breve descripción: El capítulo I se ha dividido en dos secciones. En la primera se enuncian algunas definiciones y propiedades de anillos, ideales y módulos, que se utilizan en la prueba de las proposiciones de este documento. En la segunda se hace una introducción a los anillos de fracciones, su construcción y propiedades elementales, finalizando con la contracción y extensión de ideales en anillos de fracciones. En el capítulo II se estudia uno de los elementos importantes del algebra conmutativa; la descomposición de ideales (es decir, ideales que se pueden escribir como una intersección finita de ciertos ideales; los ideales primarios) y se desarrollan algunas propiedades. Luego se definen los elementos enteros y las extensiones de anillos, estando especialmente interesados en aquellos anillos B tal que todos sus elementos son enteros sobre un subanillo A, de B (Extensiones enteras de anillos). En el capítulo III se procede con la parte fundamental de esta investigación, definir la estructura de los anillos que satisfacen la condición de cadena ascendente (Noetherianos) y descendente (Artinianos), en ideales y algunas de sus propiedades. En cada capítulo se encuentran resultados donde se da una demostración, la cual puede ser no única por lo que no se descarta la posibilidad de mejorarla ABSTRACT: The development of this work is carried out in three chapters, of which a brief description is made below: Chapter I has been divided into two sections. In the first, some definitions and properties of rings, ideals and modules, which are used in the proof of the propositions of this document, are stated. In the second, an introduction to fraction rings, their construction and elementary properties is made, ending with the contraction and extension of ideals in fraction rings. In chapter II, one of the important elements of commutative algebra is studied; the decomposition of ideals (that is, ideals that can be written as a finite intersection of certain ideals; the primary ideals) and some properties are developed. Then the integer elements and the extensions of rings are defined, being especially interested in those rings B such that all its elements are integers on a subring A, of B (Integer extensions of rings). Chapter III proceeds with the fundamental part of this investigation, defining the structure of the rings that satisfy the condition of ascending (Noetherians) and descending (Artinians) chain, in ideals and some of their properties. In each chapter there are results where a demonstration is given, which may not be unique, so the possibility of improving it is not ruled outItem Anillos euclidianos y teoremas fundamentales(2014-09-01) Martínez Orellana, Andrés; Mejía Munguía, Ana Luz; Martínez Gutiérrez, Jorge AlbertoTrabajo de investigación enfocado en la presentación de un trabajo ordenado y formal sobre la obra de Euclides relacionado a los Anillos de manera que se alcance una mayor comprensión sobre la temática y a la vez que sea utilizado como una herramienta de estudio para otros estudiantes y docentes.Item Aplicaciones de los espacios hilbert-banach(2019-08-01) Juárez Luna, Aleyda Elizabeth; Hernández Ramos, Elmer Sauĺ; Guevara Membreño, Mártir Lucío; Vásquez, José FredyRESUMEN: Los espacios de Hilbert tienen su origen en los trabajos de David Hilbert (1862-1943) sobre la equivalencia de ecuaciones integrales y sistemas infinitos de ecuaciones algebraicas con una infinidad de incógnitas. Esta obra, motivada por los trabajos de I. Fredholm, aparecio en el libro: Grundzuge einerallgemeinen Theorie der linear en Integral gleichungen en 1912. El presente trabajo de investigación tiene como propósito describir los espacios de Hilbert, de Banach y algunas de sus aplicaciones. En el capítulo 1, estudiaremos los espacios vectoriales, los espacios métricos y sus nociones topológicas, además de las aplicaciones entre dichos espacios y abordaremos también los conceptos de completitud y compacidad en los espacios métricos a fin de establecer las ideas preliminares que nos ayudaran a comprender la siguiente parte de la investigación. Finalmente, en el capítulo 3, describiremos algunas de las aplicaciones del teorema del punto fijo de Banach; a ecuaciones lineales, ecuaciones diferenciales. Además de la aproximación en espacios normados y consideraremos el problema de la unicidad de las mejores aproximaciones. ABSTRACT: Hilbert spaces have their origin in the works of David Hilbert (1862-1943) on the equivalence of integral equations and infinite systems of algebraic equations with infinitely many unknowns. This work, motivated by the works of I. Fredholm, appeared in the book: Grundzuge einerallgemeinen Theorie der linear en Integral gleichungen in 1912. The purpose of this research work is to describe the spaces of Hilbert, Banach and some of their Applications. In Chapter 1, we will study vector spaces, metric spaces and their topological notions, in addition to the applications between these spaces and we will also address the concepts of completeness and compactness in metric spaces in order to establish the preliminary ideas that will help us understand the next part of the investigation. Finally in chapter 3, we will describe some of the applications of Banach's fixed point theorem; to linear equations, differential equations. In addition to the approximation in normed spaces and we will consider the problem of the uniqueness of the best approximationsItem Cirugía en 3-variedades(2024-10) Hernández Cuadra, Francisco Daniel; Aparicio Ramírez, José Joaquín; hc19019@ues.edu.svEsta investigación presenta una introducción a la cirugía en 3-variedades, tomando conceptos básicos de topología sobre 3-variedades; La topología de 3-variedades es el estudio de espacios tridimensionales que, localmente, se comportan como el espacio euclidiano tridimensional. Estos espacios, conocidos como 3-variedades, son esenciales en el análisis de estructuras geométricas y topológicas. Un ejemplo simple de una 3-variedad es el propio espacio en el que vivimos, R3, pero también existen ejemplos más abstractos, como la esfera tridimensional S3 o el toro tridimensional. y nudos topológicos; para luego ver cómo se realizar el proceso de cirugía manera descriptiva y luego validando todos esos procesos mediante la cirugía de Dehn. Finalizando en una aplicación, que una de ellas es en la conjetura de Poincaré,Esta conjetura fue un desafío central en la topología durante gran parte del siglo XX, ya que si bien existía una comprensión profunda de las esferas en dimensiones superiores o inferiores, la dimensión tres resultó ser especialmente difícil. Finalmente, en 2003, el matemático ruso Grigori Perelman demostró la conjetura utilizando herramientas avanzadas de la geometría y la topología, completando una serie de trabajos iniciados por el teorema de geometrización de Thurston. Su demostración fue revolucionaria y llevó a la resolución de uno de los problemas más fundamentales de la matemática, ganándole a Perelman el reconocimiento mundial y la Medalla Fields, que rechazó.Ahora se llama Teorema de Poincaré This research presents an introduction to surgery on 3-manifolds, starting with basic topology concepts related to 3-manifolds. The topology of 3-manifolds is the study of three-dimensional spaces that locally behave like three-dimensional Euclidean space. These spaces, known as 3-manifolds, are essential in the analysis of geometric and topological structures. A simple example of a 3-manifold is the very space we live in, R3, but there are also more abstract examples such as the three-dimensional sphere S3 or the three-dimensional torus, and topological knots. We then explore how the surgery process is performed descriptively, followed by the validation of these processes through Dehn surgery. Finally, we conclude with an application, one of which is related to the Poincaré conjecture. This conjecture was a central challenge in topology throughout much of the 20th century. While there was a deep understanding of spheres in higher or lower dimensions, the three-dimensional case proved to be particularly difficult. Finally, in 2003, the Russian mathematician Grigori Perelman proved the conjecture using advanced tools from geometry and topology, completing a series of works initiated by Thurston’s Geometrization Theorem. His proof was revolutionary and led to the resolution of one of the most fundamental problems in mathematics, earning Perelman worldwide recognition and the Fields Medal, which he declined. It is now known as the Poincaré Theorem.Item Cónicas en geometría proyectiva(2015-03-01) Hernández Pérez, José Alfredo; Trejo Montiel, Manuel Bernardo; Martínez Guitiérrez, Jorge AlbertoLa geometría proyectiva es una rama de la geometría que estudia los objetos lineales (puntos, líneas, planos, hiperplanos, etc.) y como se interceptan. Estos objetos son estudiados en espacios que tienen más puntos que los espacios usuales, es decir, que el plano R2 y el espacio tridimencional R3, estos espacios son llamados "proyectivos". Investigación documental que propone recabar información bibliográfica para su aplicación en la carrera de Licenciatura en Matemática, enfocado principalmente, en cónicas y sus construcciones en el área de geometría proyectiva. Analiza las diferencias que existen entre la geometría proyectiva, la euclidiana y la analítica.Item Construcción de figuras geométricas con regla y compás desde un punto de vista algebraico(2013-03-01) Aguilar Torres, Sonia Haydeé; Hernández Acosta, José Abraham; Sánchez Luna, José Ever; Mejía, MarcelinoRESUMEN: El presente trabajo da a conocer las herramientas necesarias, tanto del álgebra abstracta como de la geometría plana, para que el estudiante pueda identificar las construcciones geométricas que se pueden realizar con el uso de una regla no graduada, un compás, un marcador y una hoja de papel. Se inicia desarrollando un enfoque teórico de conceptos y propiedades algebraicas de anillos, campos y extensiones de campos. Luego contextos geométricos; elementos que se consideran necesarios para el desarrollo de este trabajo. Además, se brindan las construcciones básicas que son fundamentales para poder trazar figuras más complejas como los polígonos regulares. Así podemos hacer una relación entre la geometría y el álgebra, esta última nos dará las bases necesarias para saber cuáles figuras geométricas pueden construirse con regla y compás para luego crearlas con la ayuda de la geometría. También se estudia la genialidad de Carl Gauss que da como resultado la construcción del heptadecágono regular. También se comprende porque los tres problemas clásicos de la antigüedad, la trisección del ángulo, la duplicación del cubo, y la cuadratura del círculo, no son resolubles utilizando únicamente nuestras herramientas. ABSTRACT: The present work reveals the necessary tools, both of abstract algebra and of plane geometry, so that the student can identify the geometric constructions that can be made with the use of a non-graduated ruler, a compass, a marker and a sheet of paper. of paper. It begins by developing a theoretical approach to concepts and algebraic properties of rings, fields and field extensions. Then geometric contexts; elements that are considered necessary for the development of this work. In addition, the basic constructions that are essential to be able to draw more complex figures such as regular polygons are provided. In this way we can make a relationship between geometry and algebra, the latter will give us the necessary bases to know which geometric figures can be constructed with a ruler and compass and then create them with the help of geometry. The genius of Carl Gauss that results in the construction of the regular heptadecagon is also studied. It is also understandable why the three classic problems of antiquity, the trisection of the angle, the doubling of the cube, and the squaring of the circle, are not solvable using only our toolsItem Espacios de Sobolev y Formulación Variacional de algunos problemas de valor en la Frontera en Dimensión N.(2017-10-01) Parada Ramos, Rodolfo Kevin; Quintanilla Reyes, José Mario; Martínez Lovo, Tobías HumbertoEstudiar los Espacios de Sobolev y la Formulación Variacional de algunos problemas de Valor en la Frontera en Dimensión N .Este trabajo está enfocado al estudio de las propiedades de algunos espacios de Banach de funciones débilmente diferenciables en dimensión N, las cuales surgen en conexión con numerosos problemas de la teoría de Ecuaciones Diferenciales Parciales (EDP) y áreas relacionadas con el análisis matemático, y los cuales son herramientas esenciales en esas disciplinas. Estos espacios son ahora más a menudo asociados con el nombre del matemático soviético Sergéi Lvóvich Sóbolev (1908-1989). Los Espacios de Sobolev, son estructuras matemáticas muy interesantes, pero su significado principal reside en el papel central que ellos y sus numerosas generalizaciones, ahora juegan un papel muy importante en EDP. Además de explicar la teoría de los Espacios de Sobolev, se presentan algunas aplicaciones específicas, las cuales se encuentran en la mayoría de textos modernos de EDP. Este trabajo también pretende servir como referencia, para estudiantes de Licenciatura en Matemáticas que deseen investigar sobre estos espacios para el estudio de Ecuaciones Diferenciales.Item Geometría computacional: diagramas de Voronoi(2020-12-01) Nolasco Machado, Edwin Hidaldo; Villegas Nolasco, Elena Jackelinne; Merlos Juárez, William NoéRESUMEN: En el presente trabajo hacemos una introducción al estudio de los diagramas de Voronoi. Para ello primeramente presentamos conceptos básicos de la teoría de grafos y algunos teoremas importantes como los son: Formula de Euler y teorema de Kuratowski. Posteriormente definimos conceptos de geometría computacional, se presentan ejemplos clásicos de geometría computacional, con sus respectivos algoritmos, además, se define la envolvente convexa de un conjunto S de n puntos en el plano que es de gran importancia en la geometría computacional. Luego, en el último capítulo se presentan las propiedades de los diagramas de Voronoi y algunos de los teoremas más importantes de este tema; también se brinda una descripción detallada sobre los principales algoritmos para la construcción de dichos diagramas y por último se presentan algunas aplicaciones de los diagramas de Voronoi para resolver problemas. ABSTRACT: In the present work we make an introduction to the study of Voronoi diagrams. To do this, we first present basic concepts of graph theory and some important theorems such as: Euler's formula and Kuratowski's theorem. Later we define concepts of computational geometry, classical examples of computational geometry are presented, with their respective algorithms, in addition, the convex envelope of a set S of n points in the plane is defined, which is of great importance in computational geometry. Then, in the last chapter, the properties of Voronoi diagrams and some of the most important theorems of this topic are presented; A detailed description is also provided of the main algorithms for the construction of said diagrams and finally some applications of Voronoi diagrams to solve problems are presented.Item Geometría en espacios de Banach(2019-11-01) Guevara Ramos, Jocelyn Mayrene; Flores Andrade, Fátima Margarita; Amaya Méndez, Jonathan Josué; Martinez Lovo, Tobías HumbertoRESUMEN: Hoy en día no podríamos concebir la mecánica cuántica sin los espacios de Hilbert, la teoría de distribuciones y la economía sin la teoría de la dualidad, ni la teoría de optimización y mejor aproximación sin la herramienta de los teoremas de Hahn-Banach, Krein-Milman y Alaoglu, deducidos por la geometría de espacios de Banach. Un espacio de Banach es un espacio normado completo (con la métrica definida por la norma). Comúnmente un espacio de Banach es entendido por un espacio normado en el que todas sus sucesiones de Cauchy convergen en ´el. La geometría de los espacios de Banach es el estudio algebraico y topológico de los mismos. Al estudiar la estructura topológica y algebraica entre los espacios se busca encontrar relaciones para comprender el comportamiento de espacios que son más complicados de estudiar. Así el concepto de geometría en espacios de Banach es un enlace entre el ´algebra y la topología de dichos espacios, es por eso que se profundizara la teoría de estos tratando que sea un documento autosuficiente. Se construirá una teoría solida con algunos ejemplos y la resolución de algunos ejercicios. Para ello se hará uso de fuentes bibliográficas confiables tanto escritas como virtuales. Se pretende demostrar los principales teoremas relacionados a la estructura algebraica y topológica de los espacios de Banach ` p , c0, el espacio C [0, 1] y el espacio peculiar J de James. ABSTRAC: Today we could not conceive of quantum mechanics without Hilbert spaces, distribution theory and economics without duality theory, or optimization theory and best approximation without the Hahn-Banach, Kerin-Krein theorems tool. Milman and Alaoglu, deduced by the geometry of Banach spaces. A Banach space is a complete normed space (with the metric defined by the norm). Commonly, a Banach space is understood as a normed space in which all its Cauchy sequences converge on it. The geometry of Banach spaces is the algebraic and topological study of them. By studying the topological and algebraic structure between spaces, we seek to find relationships to understand the behavior of spaces that are more complicated to study. Thus, the concept of geometry in Banach spaces is a link between the algebra and the topology of said spaces, that is why the theory of these will be deepened, trying to make it a self-sufficient document. A solid theory will be built with some examples and the resolution of some exercises. For this, reliable bibliographic sources, both written and virtual, will be used. It is intended to demonstrate the main theorems related to the algebraic and topological structure of the Banach spaces ` p , c0, the space C [0, 1] and the peculiar space J of JamesItem Geometría parabólica y elíptica(2022-07-01) Paiz Sandoval, Briseyda Guadalupe; Hernández Guevara, José Antonio; Martínez de López, Sonia del CarmenRESUMEN: La geometría Elíptica y Parabólica, son dos tipos de geometrías que surgen a partir de las geometrías euclidiana y analítica, en donde estas a su vez se ven relacionadas con la geometría afín y proyectiva. La geometría elíptica es un ejemplo de una geometría en la que no se cumple el postulado paralelo de Euclides, algunas veces a esta geometría se le llama geometría esférica o geometría de la esfera. En la geometría parabólica, algunas definiciones como formas bilineales, formas bilineales simétricas y antisimétricas es necesario conocer de ellas para una mayor comprensión. El estudio de la geometría elíptica comprende contenidos como rectas, triángulos, ´ángulos en una esfera, el cual son conocidos desde el punto de vista del plano euclidiano, mas no en la geometría elíptica, se observa que, en esta geometría, estos términos ya conocidos tienen sus variaciones en cuanto a su definición, y es que, por ejemplo una recta en el plano euclidiano es totalmente diferente a una recta en un plano elíptico. Para llevar a cabo la investigación se hace uso de fuentes bibliográficas confiables. ABSTRAC: Elliptical and Parabolic geometry are two types of geometries that arise from Euclidean and analytic geometries, where these in turn are related to the affine and projective geometry. The elliptical geometry is an example of a geometry in which Euclid’s parallel postulate is not fulfilled, sometimes this geometry is called spherical geometry or geometry of the sphere. In parabolic geometry, some definitions such as bilinear forms, symmetric and antisymmetric bilinear forms, it is necessary to know them for a better understanding. The study of elliptical geometry includes content such as lines, triangles, angles on a sphere, which are known from the point of view of the Euclidean plane, but not in the elliptic geometry, it is observed that in this geometry, these already known terms have their variations in terms of their definition, and it is that, for example a line in the Euclidean plane is totally different from a line in an elliptical plane. To carry out the research, reliable bibliographic sources are usedItem El grupo fundamental del nudo(2016-02-01) Campos Cordova, Noel Humberto; Robles Chavarría, Karen Iveth; Zaldivar Olivares, José David; Mejía González, MarcelinoDar a conocer la teoría básica de la Teoría de Nudos y proporcionar las herramientas necesarias para abordar el grupo fundamental del nudo. La palabra nudo designa a un objeto cotidiano que el hombre ha utilizado desde los tiempos más antiguos, su utilidad práctica no necesita explicación; es bien conocido por marineros ya que estos incluso han ideado distintas clases de nudos a los que han denominado con nombre propio. Si bien es cierto, muchos estudiantes nunca pensarían en algo tan abstracto cuando escuchan hablar de nudos reales, ya que el concepto de nudo es algo cotidiano, sin embargo hablando en un contexto matemático es un poco complicado. Pero detrás de este objeto cotidiano , nadie se podría imaginar que existe una extensa teoría matemática, la cual es del área de la Topología, es por ello que el presente trabajo de graduación, trata de hacer un estudio de la Teoría de Nudos, que es una rama muy joven de la Topología, en la cual se pretende estudiar la clasificación de nudos, invariantes y llegar al grupo fundamental del nudo ya que es muy útil para determinar si dos nudos son equivalentes o no, además se estudiarán los movimientos Reidemeister, que son parte muy importante para poder clasificar los nudos y así contribuir con el quehacer matemático en algo que es un tema novedoso que servirá para posteriores investigaciones en la Teoría de Nudos.Item Grupos fundamentales de superficies(2017-01-01) Bolainez Hernández, Katy Esmeralda; Cubías Avilés, Lisseth Stefany; Fuentes Díaz, Jiuver Jhovany; Flores Sánchez, PedroRESUMEN: Este trabajo de grado está enfocado en el área de topología Algebraica, sobre el cálculo de los grupos fundamentales de superficies. Antes de tratar los grupos fundamentales de superficies, se dan unas nociones generales sobre topología general, se introduce lo que es una variedad con borde y sin borde, así también se estudia un poco la Teoría de Grupos. El segundo capítulo es dedicado al estudio de superficies topológicas, en el que introducimos la noción de esquemas de una Región Poligonal y Superficies Topológicas donde se aborda el Teorema de Clasificación de Superficies. En el tercer se ha calculado los grupos fundamentales de superficies; primeramente se estudian algunas propiedades elementales de los grupos fundamentales, seguidamente se enfatiza en los espacios descubridores y por medio de ellos se calcula los grupos fundamentales de algunas superficies; por último se describe el Teorema de Seifert VanKampen y se calcula los grupos fundamentales de superficies de forma general utilizando dicho teorema. ABSTRACT: This degree work is focused on the area of Algebraic topology, on the calculation of the fundamental groups of surfaces. Before dealing with the fundamental groups of surfaces, some general notions about general topology are given, what is a manifold with border and without border is introduced, as well as a little study of Group Theory. The second chapter is dedicated to the study of topological surfaces, in which we introduce the notion of schemes of a Polygonal Region and Topological Surfaces where the Surface Classification Theorem is addressed. In the third, the fundamental groups of surfaces have been calculated; First, some elementary properties of the fundamental groups are studied, followed by an emphasis on the discovery spaces and by means of them the fundamental groups of some surfaces are calculated; Finally, the Seifert VanKampen Theorem is described and the fundamental groups of surfaces are calculated in a general way using said theoremItem Grupos topológicos(2015-07-01) Pérez Martínez, Rudy Wilfredo; Chicas Romero, Noé Salvador; Gómez Torres, Johnny Oswaldo; Mejía González, MarcelinoEn este trabajo lo que primordialmente se pretende es dar a conocer la teoría concerniente a los grupos topológicos, debido a que es una parte de la matemática que no se da a conocer. Se presentan las definiciones y propiedades más importantes sobre los grupos topológicos y las propiedades topológicas (compacidad, conexidad, métricas, etc.)Item Homomorfismos entre álgebras booleanas(2020-12-01) Pérez Torres, Andrés Armando; Vásquez Lazo, Wendy Adely; Martínez Lovo, Tobías Humberto; Merlos Juárez, William NoéRESUMEN: La conexión de las álgebras booleanas a través de homomorfismos. Se da inicio a partir de la Lógica Proposicional, definiendo sus operadores y conectivos lógicos, así como también los cuantificadores, teoría de conjuntos, un poco de álgebra proposicional y álgebra de conjuntos. Posteriormente se da paso al estudio del Álgebra Booleana definiendo el álgebra booleana, su estructura, propiedades, también se definirá una subálgebra booleana, anillos booleanos, ideales booleanos, ideales maximales, los homomorfismos de álgebras, sus propiedades, el concepto booleano de filtro y el cociente de anillos booleanos. Cuando se habla sobre aplicaciones del álgebra booleana es común escuchar que las álgebras booleanas son la base de la información digital, y que son parte fundamental de los circuitos electrónicos, debido a que el funcionamiento de las computadoras está basado en la estructura booleana del sistema binario. Pero, no es natural imaginar que dentro de los organismos vivos se pudiera hacer uso de estructuras booleanas. Es así, como se finaliza con el estudio de las compuertas lógicas y también se describe brevemente un modelo del código genético dado en términos de álgebras booleanas y Z26. ABSTRACT: The connection of Boolean algebras through homomorphisms. It starts from PropositionalLogic, defining its logical connectives and operators, as well as quantifiers, set theory, a bit of propositional algebra and set algebra. Subsequently, the study of Boolean Algebra is gi-ven, defining the Boolean algebra, its structure, properties, a Boolean subalgebra, Booleanrings, Boolean ideals, maximum ideals, the homomorphisms of algebras, their properties, the Boolean concept of filter and the Boolean ring quotient. When talking about applications ofBoolean algebra, it is common to hear that Boolean algebras are the basis of digital infor-mation, and that they are a fundamental part of electronic circuits, because the operation of computers is based on the Boolean structure of the binary system. But, it is not natural to imagine that within living organisms one could make use of Boolean structures. This is how the study of logic gates ends and a model of the given genetic code is also briefly described in terms of Boolean algebras and Z62.Item Informe socio-económico del municipio de Nueva Guadalupe, departamento de San Miguel, El Salvador, Centroamérica(2013-08-01) Andrade García, Fátima Sorayda; Campos Paiz, Gabriela Nataly; Villalobos Álvarez, Manuel Alejandro; Rodríguez Portillo, Cruz Adalberto; Lizama Vigil, Oscar UlisesRESUMEN: La presente investigación sobre Informe Socio-Económico del Municipio de Nueva Guadalupe, Departamento de San Miguel, El Salvador, Centroamérica”, enmarca la necesidad de la Administración Municipal en su continua búsqueda de mejorar la base estadística de dicho Municipio, a través de la obtención de indicadores económicos y sociales. Recopilamos información de las variables relacionadas al área social y económica, para realizar la tabulación, interpretación y análisis de los datos recopilados en el Municipio de Nueva Guadalupe. Proveer herramientas útiles que permitan estudiar con facilidad la situación socio-económica de los habitantes del Municipio de Nueva Guadalupe tanto a la Administración Municipal como a instituciones gubernamentales y no gubernamentales en El Salvador. Para lo cual se recomienda la implementación de un programa de alfabetización con el objetivo de reducir el alto índice de analfabetismo en el Municipio, la ejecución de talleres de Apicultura, Carpintería, Avicultura, Acuicultura, Corte y Confección, etc. para incentivar a la población en la búsqueda de un empleo, aprovechando los 1,703 trabajadores con edad entre 8 y 24 y llevar a cabo reuniones con los habitantes con el afán de conocer de primera mano sus necesidades esenciales y coordinar proyectos de carácter social en beneficio de la población. ABSTRACT: The present investigation on the Socio-Economic Report of the Municipality of Nueva Guadalupe, Department of San Miguel, El Salvador, Central America”, frames the need of the Municipal Administration in its continuous search to improve the statistical base of said Municipality, through obtaining of economic and social indicators. We collect information on the variables related to the social and economic area, to carry out the tabulation, interpretation and analysis of the data collected in the Municipality of Nueva Guadalupe. Provide useful tools that allow easy study of the socio-economic situation of the inhabitants of the Municipality of Nueva Guadalupe, both for the Municipal Administration and for governmental and non-governmental institutions in El Salvador. For which the implementation of a literacy program is recommended with the aim of reducing the high rate of illiteracy in the Municipality, the execution of beekeeping, carpentry, poultry, aquaculture, cutting and sewing workshops, etc. to encourage the population in the search for a job, taking advantage of the 1,703 workers between the ages of 8 and 24 and to hold meetings with the inhabitants with the aim of knowing first-hand their essential needs and coordinating social projects for the benefit of the populationItem "Introducción a formas diferenciales"(2018-12-01) Guerrero Molina, Jennifer Stefany; Hernández de Aguirre, Yesica Esmeralda; Merlos Juárez, William NoeRESUMEN: En el siguiente trabajo trata de las distintas propiedades de las funciones dadas en el análisis complejo, luego se presentará una recopilación de conceptos y definiciones básicas que nos ayudarán a entender las distintas propiedades que pueden ser aplicadas a las funciones Holomorfas, dada una breve descripción serian funciones puramente complejas, las cuales son infinitamente diferenciables dentro de un dominio de definición. Una forma diferencial es un objeto matemático que aparece naturalmente en el cálculo multivariable, cálculo tensorial y en física. Comúnmente es entendida como un operador multilineal antisimétrico definido sobre el espacio vectorial tangente a una variedad diferenciable. ABSTRACT: In the following work it deals with the different properties of the functions given in the complex analysis, then a compilation of concepts and basic definitions will be presented that will help us to understand the different properties that can be applied to the Holomorphic functions, given a brief description would be purely complex functions, which are infinitely differentiable within a domain of definition. A differential form is a mathematical object that appears naturally in multivariable calculus, tensor calculus, and in physics. It is commonly understood as an antisymmetric multilinear operator defined on the vector space tangent to a differentiable manifold.Item Introducción a La Geometría de Brocard(2016-03-01) Aguilar Ortiz, Francisca Elizabeth; Torres Soto, Sergio David; González, Angel Roberto; Flores Sánchez, PedroRESUMEN: Conocer los conceptos involucrados para las construcciones en la Geometría de Brocard. Se ha elegido investigar el tema Introducción a la Geometría de Brocard, para indagar e investigar campos más avanzadas que hasta ahora son poco tratados en la geometría impartida en los cursos actuales de la carrera Licenciatura en Matemática, se abordan conceptos que permiten la conexión con otros nuevos y que sirven como base para construir nuevas teorías, ésto es; a partir de los conceptos básicos de la Geometría Euclidiana se construyen conceptos de la Geometría de Brocard. El enfoque principal en esta investigación se hará alrededor de la teoría de la Geometría Moderna, se extenderán las definiciones, propiedades y teoremas más importantes que servirán como base para la construcción y comprensión de la Geometría de Brocard. ABSTRACT:Know the concepts involved for constructions in Brocard Geometry. It has been chosen to investigate the topic Introduction to Brocard's Geometry, to investigate and investigate more advanced fields that until now are little treated in the geometry taught in the current courses of the Bachelor of Mathematics career, concepts that allow the connection with other new and that serve as a basis for building new theories, that is; From the basic concepts of Euclidean Geometry concepts of Brocard Geometry are built. The main focus in this research will be around the theory of Modern Geometry, the most important definitions, properties and theorems that will serve as a basis for the construction and understanding of Brocard Geometry will be extendedItem Introducción a la geometría inversiva(2019-10-01) Garcia Guardado, Karen Rocio; Medina Castillo, Cindy Astrid; Merlos Juárez, William NoéRESUMEN: Presentamos una de las herramientas de las que dispone la matemática, que nos permite resolver problemas que, sin ella, serían muy difíciles, y es la inversión geométrica. La inversión geométrica es una aplicación que establece una correspondencia biunívoca entre los puntos exteriores y los puntos interiores de una circunferencia dada en un plano; este procedimiento, cuando se aplica a distintas clases de líneas (como rectas o circunferencias), permite generar imágenes inversas de estas líneas con propiedades geométricas reseñables, es por eso que se profundizara en ésta ´área, y se construirá una teoría solida con algunos ejemplos y la aplicación de algunas propiedades de inversión. Además, veremos que las inversiones se pueden relacionar en áreas, como por ejemplo en geometría analítica, proyectiva, etc. Para ello se hace uso de fuentes bibliográficas confiables escritas y virtuales. ABSTRACT: We present one of the tools available to mathematics, which allows us to solve problems that, without it, would be very difficult, and it is geometric inversion. Geometric inversion is an application that establishes a one-to-one correspondence between the exterior points and the interior points of a given circumference in a plane; This procedure, when applied to different kinds of lines (such as lines or circles), allows generating inverse images of these lines with noteworthy geometric properties, that is why this area will be deepened, and a solid theory will be built with some examples. and the application of some investment properties. In addition, we will see that inversions can be related in areas, such as analytical geometry, projective geometry, etc. For this, reliable written and virtual bibliographic sources are usedItem Introducción a la teoría geométrica de grupo(2023-02-20) Moraga Chévez, Katerinne Alejandra; Ojeda Salgado, Marlyn Joanna; Zavala Bonilla, Elsy Nuri; Hernández Hernández, Mario FranciscoRESUMEN: La teoría geométrica de grupos es un área de la matemática que se dedica al estudio de los grupos finitamente generados mediante las exploraciones entre las propiedades de tales grupos y las propiedades geométricas de los espacios donde estos grupos actúan (esto es, cuando los grupos en cuestión son realizados como simetrías geométricas o transformaciones continuas de algunos espacios). En nuestra investigación bibliográfica estudiamos la teoría geométrica de grupos con la idea de considerar los mismos grupos finitamente generados como objetos geométricos, usamos formas para estudiar grupos, que son los grafos, cada uno de sus vértices son elementos del grupo en cuestión, además, aunque el mismo grupo puede tener grafos moderadamente diferentes, no le impide usar uno para estudiar el grupo. El estudio de ver los grupos como objetos geométricos es usualmente hecho mediante el estudio del grafo de Cayley del grupo, pasando por las acciones de grupo en el cual se puede contemplar una generalización de los grupos como grupos de simetría, hasta llegar a que la estructura del grafo esta adosada a un espacio métrico, mediante una métrica llamada métrica de palabras. Es importante el estudio de los grupos finitamente generados hasta la cuasi-isometría, para poder llegar a nuestro objetivo, el lema de Švarc-Milnor. En la práctica, este resultado nos indica dos cosas; Si queremos saber más sobre la geometría de un grupo o si queremos saber que un grupo dado está finitamente generado, en este caso, exhibir una buena acción de este grupo en un espacio adecuado es suficiente. Por el contrario, si queremos saber más sobre un espacio métrico, basta con encontrar una buena acción de un grupo conocido adecuado. Por lo tanto, el lema de Švarc-Milnor también se denomina “lema fundamental de la teoría geométrica de grupos”. ABSTRACT: The geometric theory of groups is an area of mathematics that is dedicated to the study of finitely generated groups by explorations between the properties of such groups and the geometric properties of spaces where these groups act (that is, when the groups in question are performed as geometric symmetries or continuous transformations of some spaces). In our bibliographical research we study the geometric theory of groups with the idea of considering the same finitely generated groups as geometric objects, we use forms to study groups, which are graphs, each of its vertices are elements of the group in question, in addition, although the same group may have moderately different graphs, it does not prevent you from using one to study the group. The study of seeing groups as geometric objects is usually done by studying the group’s Cayley graph, passing through group actions in which a generalization of groups as symmetry groups can be contemplated, until the structure of the graph is attached to a metric space, using a metric called word metric. It is important to study finitely generated groups up to quasi-isometry, to reach our goal, the Švarc-Milnor lemma. In practice, this result tells us two things; if we want to know more about the geometry of a group or if we want to know that a given group is finitely generated, in this case, exhibiting a good action of this group in a suitable space is enough. On the contrary, if we want to know more about a metric space, it is enough to find a good action of a suitable known group. Therefore, the motto Švarc-Milnor is also called “fundamental motto of geometric group theory”
- «
- 1 (current)
- 2
- 3
- »